Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.
نویسندگان
چکیده
Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 μg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 μg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.
منابع مشابه
Interaction of Candida albicans with Fluconazole/ Clotrimazole: Effect on Hyphae Formation and Expression of Hyphal Wall Protein 1
Background and Aims: Candida albicans (C. albicans) is the most common opportunistic human pathogen. Therapeutic options for Candida infections are limited to available antifungal drugs. The aim of this study was to investigate the effects of fluconazole/clotrimazole (FLU/CLT) on C. albicans hyphae formation. Materials and Methods: We have established the effectiveness of the combination of FL...
متن کاملQuantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans
Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...
متن کاملEvaluationEvaluation of antifungal activity of essential oil of Carvacrol on standard Fluconazole sensitive and resistance strains of Candida albicans
Abstract Background and objectives: Candida albicans is a human opportunistic fungus causing mucosal and systemic infections in immunocompromised individuals. There is evidence of increasing resistance to antifungal agents, thus it is necessary to search about new formulations for finding the antifungal agents. Some plants have antimicrobial properties due to presence of components such as poly...
متن کاملInhibitory Effect of Fluconazole Combined with Amphotericin B on Fluconazole-Resistant Candida albicans Biofilm Formation
Background & Objective: The incidence of biofilm-related infections caused by Candida albicans has increased dramatically. C. albicans biofilm-related infections are more resistant to antifungal medications. This work was an attempt to examine inhibitory effects of fluconazole in combination with amphotericin B on fluconazole-resistant C. albicans biofilm. Materials & Methods: Fluconazole-...
متن کاملLipase Gene Expression of Resistant and Sensitive Candida Albicans to Fluconazole Isolated from Patients Suffering from Oral Candidiasis and Vaginal Candidiasis
Abstract Background and Objective: With the development of drug resistance in strains of fungi, there is a considerable resistance of Candida albicans strains to fluconazole. Molecular studies are developing to determine the relationship of such a drug resistance with the increased gene expression of enzymes produced in drug-resistant Candida isolates. We aimed to evaluate the relationship betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 58 11 شماره
صفحات -
تاریخ انتشار 2014